Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[CottonTensor] - calculate the Cotton tensor for a metric
Calling Sequences
CottonTensor(g, C, R)
Parameters
g - a metric tensor on the tangent bundle of a 3 dimensional manifold
C - (optional) the Christoffel connection for the metric g
R - (optional) the curvature tensor of the metric g
Description
Let R_{hl} be the Ricci tensor for the metric g. The Cotton tensor is defined in components by C^{ij} = e^{ihk} g^{jl} nabla_k R_{hl} (symmetrize on i, j). Here e^{ihk} denotes the contravariant permutation symbol and nabla_k R_{hl} is the covariant derivative of the Ricci tensor with respect to the Christoffel connection.
The Cotton tensor is symmetric, trace-free, divergence-free and a relative conformally invariant of the metric.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CottonTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CottonTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and define a metric on the tangent space of M.
Check that the Cotton tensor CotTen1 is trace-free.
Check that the Cotton tensor is divergence-free.
Check that the Cotton tensor is a relative conformal invariant on the metric.
See Also
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, ParallelTransportEquations, WeylTensor
Download Help Document