Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[LieBracket] - calculate the Lie bracket of two vector fields or 2 vectors in a Lie algebra
Calling Sequence
LieBracket(X, Y)
Parameters
X, Y
-
vector fields, defined on the same manifold or Lie algebra
Description
If X is a vector field on a manifold M and f is a real-valued function on M, then X may be applied to f to give a new real valued function. In coordinates, X(f) is the directional derivative of f with respect to X. The Lie bracket of two vector fields X, Y , defined on a manifold M, is the vector field Z defined by the commutator rule Z(f) = X(Y(f)) - Y(X(f)). The standard notation for the Lie bracket is Z = [X, Y].
The LieBracket command is also used to calculate brackets in an abstract Lie algebra.
This command is part of the DifferentialGeometry package, and so can be used in the form LieBracket(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-LieBracket.
Examples
Define a 2-dimensional manifold M..
Example 1.
Define a pair of vector fields X1 and Y1.
Calculate the Lie bracket of X1 and Y1.
Let's check this result against the commutator definition of the Lie bracket acting on functions. To apply a vector field to a function we use the LieDerivative command.
Example 2.
Here is the general coordinate formula for the Lie bracket of two vector fields defined on a 2-dimensional manifold.
Example 3.
Two vector fields are said to commute if their Lie bracket is 0. For example:
Example 4.
The Lie bracket satisfies the Jacobi identity [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0. For example:
Example 5.
Use LieAlgebraData and DGsetup to initialize a Lie algebra.
Calculate the Lie bracket of 2 vectors in this Lie algebra.
See Also
DifferentialGeometry, ExteriorDerivative, LieDerivative
Download Help Document