Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
thiele - Thiele's continued fraction interpolation formula
Calling Sequence
thiele (x, y, v)
Parameters
x
-
list of independent values,
y
list of dependent values,
v
variable or value to be used in a rational function
Description
Important: The thiele function has been deprecated. Use the superseding function CurveFitting[ThieleInterpolation] instead. A call to thiele automatically generates a call to CurveFitting[ThieleInterpolation].
The thiele function computes the rational function of variable v (or evaluated at numerical value v) in continued fraction form which interpolates the points {(x[1], y[1]), (x[2], y[2]), ..., (x[n], y[n])}. If n is odd then the numerator and denominator polynomials will have degree . Otherwise, n is even and the degree of the numerator is and the degree of the denominator is .
If the same x-value is entered twice, it is an error, whether the same y-value is entered. All independent values must be distinct.
Examples
See Also
CurveFitting, CurveFitting[ThieleInterpolation]
References
The function Thiele uses Thiele's interpolation formula involving reciprocal differences. For more information, refer to:
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover Publications, Inc., 1965. Chap. 25 p. 881, Formula 25.2.50.
Download Help Document