Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Painleve ODEs - First through Sixth Transcendents
Description
The general forms of the Painleve ODEs are given by the following:
Painleve_ode_1 := diff(y(x),x,x) = 6*y(x)^2+x;
Painleve_ode_2 := diff(y(x),x,x) = 2*y(x)^3+x*y(x)+a;
Painleve_ode_3 := diff(y(x),x,x) = diff(y(x),x)^2/y(x)-diff(y(x),x)/x+(a*y(x)^2+b)/x+g*y(x)^3+d/y(x);
Painleve_ode_4 := diff(y(x),x,x) = 1/2*diff(y(x),x)^2/y(x)+3/2*y(x)^3+4*x*y(x)^2+2*(x^2-a)*y(x)+b/y(x);
Painleve_ode_5 := diff(y(x),x,x) = (1/2/y(x)+1/(y(x)-1))*diff(y(x),x)^2-diff(y(x),x)/x+(y(x)-1)^2/x^2*(a* y(x)+b/y(x))+g*y(x)/x+d*y(x)*(y(x)+1)/(y(x)-1);
Painleve_ode_6 := diff(y(x),x,x)=1/2*(1/y(x)+1/(y(x)-1)+1/(y(x)-x))* diff(y(x),x)^2-(1/x+1/(x-1)+1/(y(x)-x))*diff(y(x),x)+y(x)*(y(x)-1)* (y(x)-x)/x^2/(x-1)^2*(a+b*x/y(x)^2+g*(x-1)/(y(x)-1)^2+d*x*(x-1)/(y(x)-x)^2);
These ODEs are irreducible. See E.L. Ince. Ordinary Differential Equations, New York: Dover Publications, 1956, 345.
Examples
All the Painleve ODEs are recognized by the odeadvisor command:
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.
Download Help Document