Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[gausselim] - Gaussian elimination on a matrix
Calling Sequence
gausselim(A)
gausselim(A, 'r')
gausselim(A, 'r', 'd')
gausselim(A, rmar)
Parameters
A
-
rectangular matrix
'r'
(optional) for returning the rank of A
'd'
(optional) for returning the determinant of A
rmar
(optional) non-negative integer
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
Gaussian elimination with row pivoting is performed on A, an n by m matrix over a field. At present, if the matrix contains floating-point or decimal numbers, then Gaussian elimination with partial pivoting is used where all arithmetic is done in floating-point at Digits precision. In this case, the matrix entries on input must all be numbers of type numeric or complex(numeric). Otherwise ordinary Gaussian elimination is used. At present, the matrix entries must be rationals or complex rationals or in general rational functions with these coefficients.
The result is an upper triangular matrix B. If A is an n by n matrix then .
If an optional second parameter is specified, and it is a name, it is assigned the rank of A. The rank of A is the number of non-zero rows in the resulting matrix.
If an optional third parameter is also specified, and the rank of A = n, then it is assigned the determinant of .
If an optional second parameter is specified, and it is an integer, the elimination is terminated at this column position.
The command with(linalg,gausselim) allows the use of the abbreviated form of this command.
Examples
See Also
Gausselim, linalg(deprecated)[backsub], linalg(deprecated)[ffgausselim], linalg(deprecated)[gaussjord], linalg(deprecated)[rank], LinearAlgebra
Download Help Document