Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[QRdecomp] - QR decomposition of a matrix
Calling Sequence
QRdecomp(A)
QRdecomp(A, arg2, arg3, ...)
QRdecomp(A, Q='q', rank='r', fullspan=value)
Parameters
A
-
rectangular matrix
arg.i
(optional) is of the form name=val
rank='r'
(optional) for returning the rank of A
Q='q'
(optional) for returning the Q factor of A
fullspan=value
(optional) include null span in Q
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The routine QRdecomp computes the QR decomposition of the matrix A.
For matrices of floating-point entries, the numerically stable Householder-transformations are used. For symbolic computation, the Gram-Schmidt process is applied.
The result is an upper triangular matrix R. The orthonormal (unitary) factor Q is passed back to the Q parameter.
The default factorization is the full QR where R will have the same dimension as A. Q will be a full rank square matrix whose first n columns span the column space of A and whose last m-n columns span the null space of A.
If the (optional) fullspan arg is set to false, a Q1R1 factorization will be given where the Q1 factor will have the same dimension as A and, assuming A has full column rank, the columns of Q will span the column space of A. The R factor will be square and agree in dimension with Q. The default for fullspan is true.
If A is an n by n matrix then .
If A contains complex entries, the Q factor will be unitary.
The QR factorization can be used to generate a least squares solution to an overdetermined system of linear equations. If , and then can be solved through backsubstitution.
The command with(linalg,QRdecomp) allows the use of the abbreviated form of this command.
Examples
Warning, unable to find a provably non-zero pivot
See Also
linalg(deprecated)[backsub], linalg(deprecated)[GramSchmidt], linalg(deprecated)[leastsqrs], linalg(deprecated)[rank], LinearAlgebra
Download Help Document