Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[LUdecomp] - LU decomposition of a matrix
Calling Sequence
LUdecomp(A)
LUdecomp(A, arg2, arg3, ...)
LUdecomp(A, P='p', L='l', U='u' , U1='u1', R='r', rank='ran', det='d')
Parameters
A
-
rectangular matrix
arg.i
(optional) of the form name=val
P='p'
(optional) the pivot factor
L='l'
(optional) the unit lower triangular factor
U='u'
(optional) the upper triangular factor
U1='u1'
(optional) the modified U factor
R='r'
(optional) the row-reduced factor
rank='ran'
(optional) the rank of A
det='d'
(optional) the determinant of U1
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The routine LUdecomp computes both the traditional LU decomposition and a modified PLU1R decomposition of the matrix A. It returns U.
For matrices of floating-point entries, a partial (row) pivoting method is used. For symbolic computation, pivoting is done only when a leading entry is zero. The pivot (permutation) matrix is returned as P.
The basic decomposition generates a square unit lower triangular L factor and an upper triangular U factor with the same dimensions as A so that A = P*L*U.
The decomposition further factors U into U1*R where U1 is square upper triangular and R is the unique reduced row-echelon form of the matrix A. In this case A = P*L*U1*R.
The det parameter is defined to be the determinant of the U1 factor. This is non-zero for all matrices. When A has full rank, this will coincide with the determinant of A.
The rank parameter will be the rank of A. This will be of questionable value if A is composed of floating-point values and is ill-conditioned.
U1 is assumed to be non-singular. The matrix R, i.e. the row-echelon factor of A, will only be correct if this is the case. If A has parameters in its entries, and for some values of the parameters det(U1) = 0, then the row-echelon form must be recomputed for these values of the parameters.
Note that this paper names the U1 factor simply U.
The command with(linalg,LUdecomp) allows the use of the abbreviated form of this command.
Examples
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead
show the results
verify the decomposition (p is the identity).
det(u1) = k*(4+k) so u1 is singular when k=-4 or k=0, we investigate these separately
and floating point gaussian elimination
See Also
linalg(deprecated)[backsub], linalg(deprecated)[gausselim], linalg(deprecated)[gaussjord], LinearAlgebra
References
Corless, Robert M.; Jeffrey, David; and Nerenberg, M. A. H. "The Row Echelon Decomposition of a Matrix." University of Western Ontario Tech Report AM-91-01, Department of Applied Mathematics, 1991.
Download Help Document