Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
limit/dir - Directional limits
Calling Sequence
limit(f, x=a, left)
limit(f, x=a, right)
limit(f, x=a, dir)
Parameters
f
-
algebraic expression
x=a
equation, where x is a name and a is the limit point
dir
(optional) direction, can be left, right, real , or complex
Description
If dir is left or right, the limit is a directional limit, taken from the left or right, respectively. If dir is real, the limit is the bidirectional real limit. If dir is complex, the limit is omni-directional, from all complex directions to the point.
If dir is not specified, the limit is the real bidirectional limit, except in the case where the limit point is infinity or -infinity, in which case the limit is from the left to infinity or from the right to -infinity respectively.
If dir is complex, the limit point infinity denotes complex infinity, that is, all infinities in the complex plane. If dir is real, the limit point infinity denotes both positive and negative infinity, and the limit is done bidirectionally. Otherwise, the limit point infinity denotes positive infinity, and -infinity denotes negative infinity.
You can enter the command limit using either the 1-D or 2-D calling sequence.
Examples
Examples using real or complex options
To use the real and complex arguments, the limit command must be written in 1-D Math notation.
limit(1/x, x=0, real);
limit(1/x, x=0, complex);
limit(1/x, x=infinity, real);
limit(-x, x=infinity, complex);
limit(exp(x), x=infinity,real);
See Also
limit, limit/multi, limit/return
Download Help Document