Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
geometry[StretchRotation] - find the stretch-rotation of a geometric object
geometry[homology] - find the homology of a geometric object
geometry[SpiralRotation] - find the spiral-rotation of a geometric object
Calling Sequence
StretchRotation(Q, P, O, theta, dir, k)
homology(Q, P, O, theta, dir, k)
SpiralRotation(Q, P, O, theta, dir, k)
Parameters
Q
-
the name of the object to be created
P
geometric object
O
point which is the center of the homology
theta
number which is the angle of the homology
dir
name which is either clockwise or counterclockwise
k
number which is the ratio of the homology
Description
Let O be a fixed point in the plane, k a given nonzero real number, theta and dir denote a given sensed angle. By the homology ( or stretch-rotation, or spiral-rotation) we mean the product where is the rotation with respect to O an angle theta in direction dir and is the dilatation with respect to the center O and ratio k.
Point O is called the center of the homology, k the ratio of the homology, theta and dir the angle of the homology.
For a detailed description of Q (the object created), use the routine detail (i.e., detail(Q))
The command with(geometry,StretchRotation) allows the use of the abbreviated form of this command.
Examples
define the parabola with vertex at (0,0) and focus at (0,1/2)
See Also
geometry[dilatation], geometry[draw], geometry[objects], geometry[reflection], geometry[transformation]
Download Help Document