Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
geometry[dilatation] - find the dilatation of a geometric object
geometry[expansion] - find the expansion of a geometric object
geometry[homothety] - find the homothety of a geometric object
geometry[stretch] - find the stretch of a geometric object
Calling Sequence
dilatation(Q, P, k, O)
expansion(Q, P, k, O)
homothety(Q, P, k, O)
stretch(Q, P, k, O)
Parameters
Q
-
the name of the object to be created
P
geometric object
k
number which is the ratio of the dilatation
O
point which is the center of the dilatation
Description
Let O be a fixed point of the plane and k a given nonzero real number. By the dilatation (or expansion, or homothety, or stretch) we mean the transformation of S onto itself which carries each point P of the plane into the point Q of the plane such that . The point O is called the center of the dilatation, and k is called the ratio of the dilatation.
For a detailed description of the object created Q, use the routine detail (i.e., detail(Q))
The command with(geometry,dilatation) allows the use of the abbreviated form of this command.
Examples
define the circle with center at (0,0) and radius 1
define the parabola with vertex at (0,0) and focus at (0,1/2)
See Also
geometry[draw], geometry[objects], geometry[transformation]
Download Help Document