Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Transformations in the geom3d Package
Description
The help page geom3d[transformation] describes the transformations that can be applied directly to a specific geometric object.
In general, to define a transformation without specifying the object to which the transformation is to be applied, use the ``verb'' form of the above transformations.
rotation
rotate
translation
translate
ScrewDisplacement
ScrewDisplace
reflection
reflect
RotatoryReflection
RotatoryReflect
GlideReflection
GlideReflect
homothety
dilate
homology
StretchRotate
Using the function geom3d[inverse], one can compute the inverse of a given product of transformations, the function geom3d[transprod] converts a given transformation or product of transformations into a product of three ``primitive'' transformations (translate, rotate, and dilate), while the function geom3d[transform] is to apply the ``result'' transformation to a specific geometric object.
Examples
Define t1 which is a homothety with ratio 3, center of homothety (0,0,0)
Define the plane oxy
Define t2 which is a glide-reflection with p as the plane of reflection and AB as the vector of translation
Define t3 as a screw-displacement with l3 as the rotational axis and AB as a vector of translation
Compute q1 which is the product of t2^t1*t3
Compute the inverse of q1
Compute the product of q1*q2; one can quickly recognize that this is an identity transformation
Simple check
Hence, the two objects are the same
See Also
geom3d[draw], geom3d[objects], geom3d[transformation]
Download Help Document