Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
geom3d[StereographicProjection] - find the stereographic projection of a point
Calling Sequence
StereographicProjection(P, P1, s)
Parameters
P
-
the name of the point to be created
P1
a point
s
a sphere
Description
Let S and N be the south pole and the north pole of the sphere s, respectively. If P1 is a point on s, then the computed point P is the stereographic projection of P1 on s to the tangent plane sp at S, i.e., P is the intersection of the line l, which passes through N and P, and sp. If P1 is a point on the tangent plane sp, then the computed point P is a point on the sphere s such that P1 is the stereographic projection of P on s to the tangent plane sp.
For a detailed description of the object created P, use the routine detail (i.e., detail(P))
The command with(geom3d,StereographicProjection) allows the use of the abbreviated form of this command.
Examples
Define the point P(4/3,4/3,4/3) on the sphere s with center at (0,0,2) and radius 2
Find the stereographic projection P1 of P
Find the stereographic projection P2 of P1
The points P and P2 should have the same coordinates
See Also
geom3d[objects], geom3d[transformation]
Download Help Document