Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
geom3d[QuasiRegularPolyhedron] - define a quasi-regular polyhedron
Calling Sequence
QuasiRegularPolyhedron(gon, sch, o, r)
cuboctahedron(gon, o, r)
icosidodecahedron(gon, o, r)
Parameters
gon
-
the name of the polyhedron to be created
sch
Schlafli symbol
o
point
r
positive number, an equation
Description
A quasi-regular polyhedron is defined as having regular faces, while its vertex figures, though not regular, are cyclic and equiangular (that is, has alternate sides and can be inscribed in circles).
There are two quasi-regular polyhedra: cuboctahedron and icosidodecahedron.
In Maple, one can define a quasi-regular polyhedron by using the command QuasiRegularPolyhedron(gon, sch, o, r) where gon is the name of the polyhedron to be defined, sch the Schlafli symbol, o the center of the polyhedron.
When r is a positive number, it specifies the radius of the circum-sphere. When r is an equation, the left-hand side is one of radius, side, or mid_radius, and the right-hand side specifies the radius of the circum-sphere, the side, or the mid-radius (respectively) of the quasi-regular polyhedron to be constructed.
The Schlafli symbol can be one of the following:
Maple's Schlafli
Polyhedron type
[[3],[4]]
cuboctahedron
[[3],[5]]
icosidodecahedron
Another way to define a quasi-regular polyhedron is to use the command PolyhedronName(gon, o, r) where PolyhedronName is either cuboctahedron or icosidodecahedron.
To access the information relating to a quasi-regular polyhedron gon, use the following function calls:
center(gon)
returns the center of the circum-sphere of gon.
faces(gon)
returns the faces of gon, each face is represented
as a list of coordinates of its vertices.
form(gon)
returns the form of gon.
radius(gon)
returns the radius of the circum-sphere of gon.
schlafli(gon)
returns the Schlafli symbol of gon.
sides(gon)
returns the length of the edges of gon.
vertices(gon)
returns the coordinates of vertices of gon.
Examples
Define an icosidodecahedron with center (0,0,0), radius of the circum-sphere 1
Access information relating to the icosidodecahedron t:
Define a cuboctahedron with center (1,1,1), radius sqrt(2)
See Also
geom3d[Archimedean], geom3d[polyhedra], geom3d[RegularPolyhedron], geom3d[stellate]
Download Help Document