Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
geom3d[FindAngle] - find the angle between two given objects
Calling Sequence
FindAngle(l1, l2)
FindAngle(p1, p2)
FindAngle(s1, s2)
FindAngle(l1, p1)
FindAngle(A, T)
Parameters
l1, l2
-
lines
p1, p2
planes
s1, s2
sphere
A
a point
T
a triangle
Description
When two lines l1, l2 do not intersect, we define the angle determined by them as the angle between two lines through the origin parallel to the given lines. It is the convention that the angle returned is in the interval [0,Pi/2].
The angle between two planes p1, p2 is equal to the angle between their normals.
The angle of intersection of two spheres s1 and s2 at a common point is the angle between the tangent-planes to the spheres at that points. Note that at all common points, the angle of intersection is the same.
The angle between a straight line l1 and a plane p1 is equal to the complement of the angle between the straight line and the normal of the plane.
If T is a triangle, and A a vertex of T, FindAngle(A,T) returns the internal angle of T at A.
The command with(geom3d,FindAngle) allows the use of the abbreviated form of this command.
Examples
Find the angle between a line and a plane
make necessary assumptions
If the point P(a,b,c) perpendiculars PM, PN are drawn to the planes of zx, xy, find the equation of the plane OMN and the angle which OP makes with it.
See Also
geom3d[distance], geom3d[line], geom3d[plane], geom3d[sphere]
Download Help Document