Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diffalg[differential_sprem] - return sparse pseudo remainder of a differential polynomial
Calling Sequence
differential_sprem (q, L, R, 'h')
differential_sprem (q, C, 'h')
Parameters
q
-
differential polynomial in R
L
list or a set of differential polynomials in R
C
characterizable differential ideal
R
differential polynomial ring
h
(optional) name
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function differential_sprem is an implementation of Ritt's reduction algorithm. It is an extension of the pseudo-remainder algorithm to differential polynomials.
L is assumed to form a differentially triangular set.
Let denote L or equations(C).
The function differential_sprem returns a differential polynomial r such that
(a)
(b) No proper derivative of the leaders of the elements of appears in .
(c) The degree according to a leader of any element of is strictly less in than in .
(d) The differential polynomial h is a power product of factors of the initials and the separants of the elements of A.
The differential_sprem(q, L, R, 'h') calling sequence returns an error message if contains 0. If contains a non zero element of the ground field of R, it returns zero.
The differential_sprem(q, C, 'h') calling sequence requires that q belong to the differential ring in which C is defined.
The function rewrite_rules shows how the equations of C are interpreted by the pseudo-reduction algorithm.
Then r is zero if and only if q belongs to C.
The command with(diffalg,differential_sprem) allows the use of the abbreviated form of this command.
Examples
Differential pseudo-division by a single differential polynomial:
Reduction according to a characterizable differential ideal:
See Also
diffalg(deprecated), diffalg(deprecated)/belongs_to, diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/Rosenfeld_Groebner, DifferentialAlgebra[DifferentialPrem]
Download Help Document