Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diffalg[belongs_to] - test if a differential polynomial belongs to a radical differential ideal
Calling Sequence
belongs_to (q, J)
Parameters
q
-
differential polynomial
J
radical differential ideal given by a characteristic decomposition.
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function belongs_to returns true if q belongs to J. Otherwise, false is returned.
Mathematically, q belongs to J if and only if q vanishes on all the zeros of J.
The differential polynomial q belongs to J if and only if it belongs to all the components of the characteristic decomposition.
q belongs to a characterizable component of J if and only if the differential remainder of q by the differential characteristic set defining is zero.
Characteristic decomposition of radical differential ideal are computed by Rosenfeld_Groebner.
The command with(diffalg,belongs_to) allows the use of the abbreviated form of this command.
Examples
See Also
diffalg, diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/differential_sprem, diffalg(deprecated)/reduced_form, diffalg(deprecated)/Rosenfeld_Groebner, diffalg(deprecated)[equations], DifferentialAlgebra[BelongsTo]
Download Help Document