Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
combinat[numbcomb] - Count the number of combinations
Calling Sequence
numbcomb(n, m)
Parameters
n
-
list or set of expressions or a non-negative integer
m
(optional) non-negative integer
Description
If n is a list or set, then numbcomb counts the combinations of the elements of n taken m at a time. If m is not given, then all combinations are considered. If n is a non-negative integer, it is interpreted in the same way as a set of the first n integers.
Note that the result of numbcomb(n, m) is equivalent to . However, this number is computed either by using binomial coefficients or by using a generating function method.
Additionally, note that if n is a non-negative integer, the result of numbcomb(n, m) is identical to that of .
The count of combinations takes into account duplicates in n. In the case where there are no duplicates, the count is given by the formula if m is not specified, or by the formula if m is specified. If there are duplicates in the list, then the generating function is used.
The command with(combinat,numbcomb) allows the use of the abbreviated form of this command.
Examples
See Also
binomial, combinat[choose], combinat[numbperm], nops
Download Help Document