Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
combinat[conjpart] - conjugate partition
Calling Sequence
conjpart(p)
Parameters
p
-
partition; non-decreasing list of positive integers
Description
The conjpart(p) command computes and returns the conjugate partition of p.
A partition of a positive integer may be represented visually by its Ferrer's diagram. This is a diagram composed of dots in rows, in which the th row consists of dots, for . The total number of dots in the diagram is equal to the number . For example, the partition of has the Ferrer's diagram:
.
consisting of ten dots arranged in three rows, with two dots in the first row, three dots in the second, and five dots in the third row.
Two partitions (of a positive integer ) are said to be conjugates if their Ferrer's diagrams are conjugate, which means that one is obtained from the other, by reflection along the anti-diagonal, by writing the rows as columns and columns as rows. For example, the conjugate of the Ferror diagram above is:
which represents the partition . Therefore, the partitions and are conjugate partitions.
Examples
See Also
combinat[encodepart], combinat[inttovec], combinat[numbpart], combinat[partition], combinat[randpart], Definition/partition
Download Help Document