Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
combinat[character] - compute character table for a symmetric group
combinat[Chi] - compute Chi function for partitions of symmetric group
Calling Sequence
character(n)
Chi(lambda, rho)
Parameters
n
-
non-negative integer
lambda
partition of n; non-decreasing list of positive integers
rho
Description
Given a group (G,*), a group of matrices (H,&*) homomorphic to G is termed a representation of G. A representation is said to be reducible if there exists a similarity transformation
that maps all elements of H to the same non-trivial block diagonal structure. If a representation is not reducible, it is termed an irreducible representation.
Given two elements of the same conjugacy class in G, the traces of their corresponding matrices in any representation are equal. The character function Chi is defined such that Chi of a conjugacy class of an irreducible representation of a group is the trace of any matrix corresponding to a member of that conjugacy class.
Taking G to be the symmetric group on n elements, , there is a one-to-one correspondence between the partitions of n and the non-equivalent irreducible representations of G. There is also a one-to-one correspondence between the partitions of n and the conjugacy classes of G.
The Maple function Chi works on symmetric groups. Chi(lambda, rho) will compute and return the trace of the matrices in the conjugacy class corresponding to the partition rho in the irreducible representation corresponding to the partition lambda, where lambda and rho are of type partition. Clearly, both rho and lambda must be partitions of the same number.
The function character(n) computes Chi(lambda, rho) for all partitions lambda and rho of n. Thus, it computes the character of all conjugacy classes for all irreducible representations of the symmetric group on n elements.
For partitions of n, in ascending lexicographical ordering, for example , the ,th entry of the character table for is given by
thus the row ordering is reversed. This is the standard layout as given in the book The Theory of Group Characters by D. E. Littlewood.
Examples
See Also
combinat, combinat[partition], type/partition
Download Help Document