Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Digital Filter Design
A Finite Impulse Response (FIR) filter is designed and applied to an input signal stored in a file. Four different types of filters are illustrated: low pass, high pass, band pass, and band stop. The effect of the filter is displayed in a frequency domain.
Input Signal
Finite Impulse Response (FIR) Filter Design
Filtered Output
A FIR filter is derived from the impulse response of the desired filter and then sampled to convert it to a discrete time filter. The infinitely long impulse response must be truncated to be implemented. If the impulse response is nonzero for negative time (the filter is anti-causal) the response must also be shifted to the right until all of the impulse response coefficients are located in the positive time region. For example, consider the low pass filter. An ideal filter has the iimpulse response defined by the sinc function:
The diagram indicates the impulse response in blue. After the impulse response has been truncated, shifted, and sampled, the FIR filter coefficients are shown in red.
To load a WAV file as the input signal, click the Load File button, which will open a file dialog box. The sampling frequency is extracted from the file, and once the file is loaded, the time and frequency responses are plotted.
Frequency Spectrum of the Input Signal
Sampling frequency (kHz):
File name:
Duration:
Number of samples:
The Input Signal in Time Domain
Finite Impulse Response (FIR) Filter
This section allows you to design different types of filters. Select the number of filter elements, the cut-off frequencies, and the filter type. Then, click the Make Filter button to create the filter, using the specified parameters, and to plot the frequency response of the filter.
To view the filter coefficients, click the Table or Plot buttons.
Frequency Spectrum of the Filter
Number of elements:
Cut-off frequencies:
lower
upper
Filter type:
View Filter Coefficients
Filter the Input Signal
Use the two dials below to select a subsection of the signal to filter.
Start
Selected Signal
End
Click the Execute Filter button to apply the designed filter to the selected signal segment. The frequency response of the input and output are shown.
To analyze the frequency response over time, the input signal segment is divided into frames of a specified length. The frequency spectrum is calculated for each frame, and displayed as a surface plot with time and frequency as the axes.
Frame length (seconds):
Frequency Response of the Input and Output Signals
Number of frames:
Frequency-Time Response for the Input Signal
Frequency-Time Response for the Output Signal
* Note: The Play Input and Play Output buttons will only work for Windows machines (except Windows Vista).
Download Help Document