Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[Mean] - compute the arithmetic mean
Calling Sequence
Mean(A, ds_options)
Mean(M, ds_options)
Mean(X, rv_options)
Parameters
A
-
Array; data sample
M
Matrix data set
X
algebraic; random variable or distribution
ds_options
(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the mean of a data set
rv_options
(optional) equation of the form numeric=value; specifies options for computing the mean of a random variable
Description
The Mean function computes the arithmetic mean of the specified random variable or data set.
The first parameter can be a data set (represented as an Array or a Matrix data set), a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
Computation
By default, all computations involving random variables are performed symbolically (see option numeric below).
All computations involving data are performed in floating-point; therefore, all data provided must have type[realcons] and all returned solutions are floating-point, even if the problem is specified with exact values.
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
Data Set Options
The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
ignore=truefalse -- This option controls how missing data is handled by the Mean command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Mean command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight .
Random Variable Options
The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the mean is computed using exact arithmetic. To compute the mean numerically, specify the numeric or numeric = true option.
Compatibility
The M parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
Compute the mean of the beta distribution with parameters p and q.
Use numeric parameters.
Generate a random sample of size 100000 drawn from the above distribution and compute the sample mean.
Compute the standard error of the sample mean for the normal distribution with parameters 5 and 2.
Create a beta-distributed random variable and compute the mean of .
Verify this using simulation.
Compute the mean of a weighted data set.
Consider the following Matrix data set.
We compute the mean of each of the columns.
See Also
Statistics, Statistics[Computation], Statistics[DescriptiveStatistics], Statistics[Distributions], Statistics[ExpectedValue], Statistics[RandomVariables], Statistics[StandardError]
References
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
Download Help Document