Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[Distributions][Hypergeometric] - hypergeometric distribution
Calling Sequence
Hypergeometric(M, X, m)
HypergeometricDistribution(M, X, m)
Parameters
M
-
population size
X
number of successes in population
m
number of trials from population
Description
The hypergeometric distribution is a discrete probability distribution with probability function given by:
subject to the following conditions:
The hypergeometric distribution is a consequence of a sequence of repeated trials (such as drawing balls from an urn) whereby items drawn are not replaced after each trial. In each trial, there is assumed to be a certain number of successes remaining that could be obtained. This distribution measures the probability of achieving a certain number of successes after all trials are complete.
Note that the Hypergeometric command is inert and should be used in combination with the RandomVariable command.
Notes
The Quantile and CDF functions applied to a hypergeometric distribution use a sequence of iterations in order to converge upon the desired output point. The maximum number of iterations to perform is equal to 100 by default, but this value can be changed by setting the environment variable _EnvStatisticsIterations to the desired number of iterations.
Examples
See Also
Statistics, Statistics[Distributions], Statistics[RandomVariable]
References
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
Download Help Document