Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[Distributions][ChiSquare] - chi-square distribution
Calling Sequence
ChiSquare(nu)
ChiSquareDistribution(nu)
Parameters
nu
-
first parameter
Description
The chi-square distribution is a continuous probability distribution with probability density function given by:
subject to the following conditions:
The ChiSquare variate with nu degrees of freedom is equivalent to the Gamma variate with scale and shape nu/2: ChiSquare(nu) ~ Gamma(2,nu/2).
The ChiSquare variate is related to the FRatio variate by the formula FRatio(nu,omega) ~ (ChiSquare(nu)*omega)/(ChiSquare(omega)*nu)
The ChiSquare variate is related to the Normal variate and the StudentT variate by the formula StudentT(nu) ~ Normal(0,1)/sqrt(ChiSquare(nu)/nu)
Note that the ChiSquare command is inert and should be used in combination with the RandomVariable command.
Examples
See Also
Statistics, Statistics[Distributions], Statistics[RandomVariable]
References
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol 1: Distribution Theory.
Download Help Document