Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[Covariance] - compute the covariance/covariance matrix
Calling Sequence
Covariance(X, Y, options)
CovarianceMatrix(M, options)
Parameters
M
-
Matrix; data samples
X
Vector; data set
Y
options
(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the covariance/covariance matrix
Description
The Covariance function computes the covariance of two data sets. The CovarianceMatrix function computes the covariance matrix of multiple data sets.
The first parameter can be a data set (represented as an Array), a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
Computation
By default, all computations involving random variables are performed symbolically (see option numeric below).
All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
Options
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.
ignore=truefalse -- This option controls how missing data is handled by the Covariance command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the Covariance command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.
weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight .
Examples
See Also
Statistics, Statistics[Computation], Statistics[DescriptiveStatistics]
References
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
Download Help Document