Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[ChiSquareGoodnessOfFitTest] - apply the chisquare test for goodness-of-fit
Calling Sequence
ChiSquareGoodnessOfFitTest(Ob, Ex, options)
Parameters
Ob
-
rtable; one-dimensional rtable of categorized observed data
Ex
rtable; one-dimensional rtable of categorized expected data
options
(optional) equation(s) of the form option=value where option is one of fitparameters, level, or output; specify options for the ChiSquareGoodnessOfFitTest function
Description
The ChiSquareGoodnessOfFitTest function computes the chisquare test for goodness-of-fit. This test attempts to determine if an observed sample can be considered to match an expected sample.
The first parameter Ob is a one-dimensional rtable of categorized observed data. This parameter must have the same length as Ex.
The second parameter Ex is a one-dimensional rtable of categorized expected data. This parameter must have the same length as Ob.
Options
The options argument can contain one or more of the options shown below.
fitparameters=posint
This option is used to specify if this goodness-of-fit test is used to indicate the number of categories used when fitting this data to a distribution. A positive value for this parameter negatively affects the number of degrees of freedom used in the calculation, and so should be no greater than rtable_num_elems(Ex)-1.
level=float
This option is used to specify the level of the analysis (minimum criteria for the observed data to be considered well-fit to the expected data). By default, this value is 0.05.
output='report', 'statistic', 'pvalue', 'criticalvalue', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'criticalvalue', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
Notes
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1.
To compare observed samples against a distribution rather than a categorized data set, the chisquare suitable model test should be applied instead.
Examples
Specify the matrices of categorized data values.
Perform the goodness-of-fit test upon this sample.
Chi-Square Test for Goodness-of-Fit ----------------------------------- Null Hypothesis: Observed sample does not differ from expected sample Alt. Hypothesis: Observed sample differs from expected sample Categories: 6 Distribution: ChiSquare(5) Computed statistic: 5 Computed pvalue: 0.41588 Critical value: 11.0704974062099 Result: [Accepted] There is no statistical evidence against the null hypothesis
See Also
Statistics, Statistics[Computation]
References
Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
Download Help Document