Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[FastArithmeticTools][BivariateModularTriangularize] - triangular decomposition of a bivariate square system by a modular method
Calling Sequence
BivariateModularTriangularize(F, R)
Parameters
R
-
polynomial ring
F
bivariate square system of R
Description
The command BivariateModularTriangularize(F, R) returns a triangular decomposition of F in R. See the command Triangularize and the page RegularChains for the concept of a triangular decompostion.
F consists of two bivariate polynomials f1 and f2 of R. No other assumptions are required.
R must have only two variables and no parameters.
Moreover R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger must be such that divides . If the degree of f1 or f2 is too large, then an error is raised.
The algorithm is deterministic (i.e. non-probabilistic) and uses modular techniques together with asymptotically fast polynomial arithmetic.
When both Triangularize and BivariateModularTriangularize apply, the latter command is very likely to outperform the former one.
Examples
Define a ring of polynomials.
Define two polynomials of R.
Compute a triangular decomposition of this system
Check the number of solutions
See Also
GeneralConstruct, RegularChains, RegularizeDim0, Triangularize
Download Help Document