Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[SparsePseudoRemainder] - pseudo-remainder of a polynomial by a regular chain
Calling Sequence
SparsePseudoRemainder(p, rc, R)
SparsePseudoRemainder(p, rc, R, out_h)
Parameters
R
-
polynomial ring
rc
regular chain of R
p
polynomial of R
out_h
polynomial of R (optional)
Description
The function call SparsePseudoRemainder(p, rc, R, out_h) returns a polynomial such that equals modulo the ideal generate by rc where is a product of the initials of rc. Moreover, the returned polynomial is reduced with respect to rc.
If out_h is provided then it is assigned .
It is assumed that pseudo-division of p by the successive polynomials of rc sorted by decreasing order of main variable.
This command is part of the RegularChains package, so it can be used in the form SparsePseudoRemainder(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[SparsePseudoRemainder](..).
Examples
See Also
ChainTools, Construct, Empty, NormalForm, PolynomialRing, RegularChains
Download Help Document