Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ParametricSystemTools][DiscriminantSet] - compute the discriminant set of a variety
Calling Sequence
DiscriminantSet(F, d, R)
Parameters
F
-
list of polynomials
d
number of parameters
R
polynomial ring
Description
The command DiscriminantSet(F, d, R) returns the discriminant set of a polynomial system with respect to a positive integer, which is a constructible set.
d is positive and less than the number of variables in R.
Given a positive integer d, the last d variables will be regarded as parameters.
A point P is in the discriminant set of F if and only if after specializing F at P, the polynomial system F has no solution or an infinite number of solutions.
This command is part of the RegularChains[ParametricSystemTools] package, so it can be used in the form DiscriminantSet(..) only after executing the command with(RegularChains[ParametricSystemTools]). However, it can always be accessed through the long form of the command by using RegularChains[ParametricSystemTools][DiscriminantSet](..).
Examples
Consider the following general quadratic polynomial F.
You can see that when F as a univariate polynomial in x has no solution (over the complex number field) or has infinitely many number solutions.
The first case indicates that there are infinite number of solutions; the second one indicates that there is no solution.
See Also
ComprehensiveTriangularize, ConstructibleSet, DefiningSet, Info, ParametricSystemTools, PreComprehensiveTriangularize, RegularChains, Triangularize
Download Help Document