Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[FastArithmeticTools][RegularizeDim0] - Test the regularity of a polynomial w.r.t. a 0-dim regular chain
Calling Sequence
RegularizeDim0(f, rc, R)
RegularizeDim0(f, rc, R, isSquareFree)
Parameters
R
-
a polynomial ring
f
a polynomial of R
rc
a regular chain of R
isSquareFree
boolean value (optional)
Description
Returns a list of pairs where is a polynomial and is a regular chain such that the regular chains form a triangular decomposition of rc in the sense of Kalkbrener, each polynomial is equal to f modulo the saturated ideal of , for all , and each polynomial is either zero or invertible modulo the saturated ideal of , for all .
The above specification is similar to that of the command Regularize. However the algorithm of the command RegularizeDim0 makes use of modular techniques and asymptotically fast polynomial arithmetic. Consequently, when both commands apply, the latter one often outperforms the former.
The function call RegularizeDim0(p, rc, R) makes two other assumptions. First rc must be a zero-dimensional regular chain. See the RegularChains package and its subpackage ChainTools for these notions.
Secondly, R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this computation. The higher the degrees of f and rc are, the larger must be, such that divides . If the degree of f or rc is too large, then an error is raised.
If isSquareFree is true then assume that rc is a squarefree regular chain, that is, its saturated ideal is radical.
Examples
p is a large prime number
Define a random dense regular chain and a polynomial
We can see that Regularize is slower than RegularizeDim0.
These additional calculations show that the two returned regular chains are equivalent (i.e. they have the same saturated ideals).
See Also
ChainTools, Inverse, IsRegular, RegularChains, Regularize
Download Help Document