Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][RepresentingRegularSystems] - return the list of regular systems in a constructible set
Calling Sequence
RepresentingRegularSystems(cs, R)
Parameters
cs
-
constructible set
R
polynomial ring
Description
The command RepresentingRegularSystems(cs,R) returns a list of regular systems which defines the constructible set cs, that is, a list of regular systems (whose polynomials belong to R) such that the union of their zero sets is exactly equal to cs.
Recall that every constructible set built by the ConstructibleSetTools module is in fact represented by a list of regular systems representing it in the above sense.
See ConstructibleSetTools and RegularChains for the related mathematical concepts, in particular for the ideas of a constructible set, a regular system, and a regular chain.
The command RepresentingRegularSystems is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form RepresentingRegularSystems(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][RepresentingRegularSystems](..).
Examples
First, define a polynomial ring and two polynomials of .
Using GeneralConstruct, construct a constructible set from the common solutions of and which do not cancel
Now retrieve the regular systems from cs.
Next extract the representing chains and inequations
The first inequation is since this polynomial can vanish inside the quasi-component of the first regular chain.
The second inequation is simply since cannot vanish inside the quasi-component of the second regular chain.
See Also
ConstructibleSet, ConstructibleSetTools, GeneralConstruct, Info, QuasiComponent, RegularChains, RegularSystem, RepresentingChain
Download Help Document