Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][RepresentingInequations] - return the list of inequations in a regular system
Calling Sequence
RepresentingInequations(rs, R)
Parameters
rs
-
regular system
R
polynomial ring
Description
The command RepresentingInequations(rs, R) returns the inequations of the regular system rs, assuming that the polynomials of rs belong to R
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form RepresentingInequations(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][RepresentingInequations](..).
See ConstructibleSetTools and RegularChains for the related mathematical concepts, in particular for the ideas of a constructible set, a regular system and, a regular chain.
Examples
Define a polynomial ring.
Define a set of polynomials of R.
The command Triangularize (with lazard option) will decompose the common solutions of the polynomials system by means of regular chains.
Let be the first regular chain and be a polynomial regarded as an inequation.
To obtain a regular system, check whether is regular with respect to .
Since is regular, you can build a regular system.
Notice that the inequation is returned by the command RepresentingInequations.
See Also
ConstructibleSet, ConstructibleSetTools, QuasiComponent, RegularChains, RegularSystem, RegularSystemDifference, RepresentingChain, RepresentingRegularSystems
Download Help Document