Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][RationalMapImage] - compute the image of a variety or a constructible set under a rational map
Calling Sequence
RationalMapImage(F, RM, R, S)
RationalMapImage(F, H, RM, R, S)
RationalMapImage(CS, RM, R, S)
Parameters
F
-
list of polynomials
RM
a list of rational functions in R
R
a polynomial ring (source)
S
a polynomial ring (target)
H
CS
constructible set
Description
The command RationalMapImage(F, RM, R, S) returns a constructible set cs which is the image of the variety under the rational map RM.
If H is specified, let be the variety defined by the product of polynomials in H. The command RationalMapImage(F, H, RM, R, S) returns the image of the constructible set - under the rational map RM.
The command RationalMapImage(CS, RM, R, S) returns the image of the constructible set CS under the rational map RM.
Both rings R and S should be over the same ground field.
The variable sets of R and S should be disjoint.
The number of polynomials in RM is equal to the number of variables of ring S.
Examples
The following example is related to the tacnode curve.
See Also
ConstructibleSet , Difference , MakePairwiseDisjoint, Projection, RegularChains
Download Help Document