Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ConstructibleSetTools][MakePairwiseDisjoint] - make the defining regular systems in a constructible set pairwise disjoint
Calling Sequence
MakePairwiseDisjoint(cs, R)
Parameters
cs
-
constructible set
R
polynomial ring
Description
The command MakePairwiseDisjoint(cs, R) returns a constructible set cs1 such that cs1 and cs are equal and the regular systems representing cs1 are pairwise disjoint.
Generally, in a constructible set, there is some redundancy among its components defined by regular systems. By default, functions on constructible sets do not remove redundancy because such a computation is expensive.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form MakePairwiseDisjoint(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][MakePairwiseDisjoint](..).
Examples
First, define the polynomial ring.
Consider the following almost general linear equations. They are not completely general, since their constant term, namely , is the same.
After projecting the variety defined by and into the parameter space given by the last 5 variables, you can see when such general linear equations have solutions after specializing the last 5 variables.
There are 9 regular systems defining the image cs of the projection. To remove common parts of these regular systems, use MakePairwiseDisjoint.
Now, there are 10 components.
Notice that some components have split during the redundancy removal.
See Also
ConstructibleSet, ConstructibleSetTools, GeneralConstruct, Projection, RefiningPartition, RegularChains
Download Help Document