Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][Regularize] - make a polynomial regular or null with respect to a regular chain
Calling Sequence
Regularize(p, rc, R)
Regularize(p, rc, R, 'normalized'='yes')
Regularize(p, rc, R, 'normalized'='strongly')
Parameters
p
-
polynomial of R
rc
regular chain of R
R
polynomial ring
'normalized'='yes'
(optional) boolean flag
'normalized'='strongly'
Description
The command Regularize(p, rc, R) returns a list made of two lists. The first one consists of regular chains such that p is regular modulo the saturated ideal of . The second one consists of regular chains such that p is null modulo the saturated ideal of .
In addition, the union of the regular chains of these lists is a decomposition of rc in the sense of Kalkbrener.
If 'normalized'='yes' is passed, all the returned regular chains are normalized.
If 'normalized'='strongly' is passed, all the returned regular chains are strongly normalized.
If 'normalized'='yes' is present, rc must be normalized.
If 'normalized'='strongly' is present, rc must be strongly normalized.
The command RegularizeDim0 implements another algorithm with the same purpose as that of the command Regularize. However it is specialized to zero-dimensional regular chains in prime characteristic. When both algorithms apply, the latter usually outperforms the former one.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form Regularize(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][Regularize](..).
Examples
See Also
Chain, Empty, Equations, Inverse, IsRegular, IsStronglyNormalized, PolynomialRing, RegularChains, RegularizeDim0, RegularizeInitial, SparsePseudoRemainder
Download Help Document