Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][Chain] - constructs regular chains
Calling Sequence
Chain(lp, rc, R)
Parameters
lp
-
list of polynomials of R
rc
regular chain of R
R
polynomial ring
Description
The command Chain(lp, rc, R) returns the regular chain obtained by extending rc with lp.
It is assumed that lp is a list of non-constant polynomials sorted in increasing main variable, and that any main variable of a polynomial in lp is strictly greater than any algebraic variable of rc.
It is also assumed that the polynomials of rc together with those of lp form a regular chain.
The function Chain allows the user to build a regular chain without performing any expensive check and without splitting or simplifying. On the contrary, the functions Construct and ListConstruct check their input completely. In addition, they simplify the input polynomials and they may also factorize some of them, leading to a list of regular chains (that is, a split) rather than a single one.
The function Chain is used by some algorithms where one tries to split the computations as little as possible. This is the case for the function EquiprojectableDecomposition.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form Chain(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][Chain](..).
Examples
See Also
ChainTools, Construct, Empty, Equations, ListConstruct, PolynomialRing, RegularChains
Download Help Document