Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[IsQHypergeometricTerm] - test if a given expression is a q-hypergeometric term
Calling Sequence
IsQHypergeometricTerm(H, n, q^n=N, R)
Parameters
H
-
function of q^n, algebraic expression
n
variable
q
name used as the parameter q, usually q
N
name
R
(optional) name; assigned the computed certificate
Description
The IsQHypergeometricTerm(H,n,q^n=N,R) command returns true if is a q-hypergeometric term of q^n. Otherwise, it returns false.
A function H is q-hypergeometric of q^n if , a rational function of q^n. is the certificate of . If the fourth optional argument is included, it is assigned the certificate .
This implementation is mainly based on the implementation by H. Boeing and W. Koepf. See the References section.
Examples
See Also
QDifferenceEquations[QObjects], QDifferenceEquations[QSimpComb]
References
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
Download Help Document