Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[IsRadical] - test whether an ideal is radical
PolynomialIdeals[Radical] - compute the radical of an ideal
PolynomialIdeals[RadicalMembership] - test for membership in the radical
Calling Sequence
IsRadical(J)
Radical(J)
RadicalMembership(f, J)
Parameters
J
-
polynomial ideal
f
polynomial
Description
The IsRadical command tests whether a given ideal is radical. An ideal J is radical if in J implies f in J for all f in the polynomial ring. Similarly, the radical of J is the ideal of polynomials f such that is in J for some integer m. This can be computed using the Radical command.
The RadicalMembership command tests for membership in the radical without explicitly computing the radical. This command can be useful in cases where computation of the radical cannot be performed.
The algorithms employed by Radical and IsRadical are based on the algorithm for prime decomposition, and require only a single lexicographic Groebner basis in the zero-dimensional case. In practice, this means that computing the radical is no harder than computing a decomposition, and that both can be computed using the same information.
The Radical and IsRadical commands require polynomials over a perfect field. Infinite fields of positive characteristic are not supported, and over finite fields only zero-dimensional ideals can be handled because the dimension reducing process generates infinite fields. These restrictions do not apply to the RadicalMembership command.
Compatibility
The PolynomialIdeals[IsRadical], PolynomialIdeals[Radical] and PolynomialIdeals[RadicalMembership] commands were updated in Maple 16.
Examples
See Also
Groebner[Basis], map, PolynomialIdeals, PolynomialIdeals[HilbertDimension], PolynomialIdeals[IdealContainment], PolynomialIdeals[IdealMembership], PolynomialIdeals[Intersect], PolynomialIdeals[PrimeDecomposition], PolynomialIdeals[ZeroDimensionalDecomposition]
References
Cox, D.; Little, J.; and O'Shea, D. Ideals, Varieties, and Algorithms. 2nd ed. New York: Springer-Verlag, 1997.
Gianni, P.; Trager, B.; and Zacharias, G. "Grobner bases and primary decompositions of polynomial ideals." J. Symbolic Comput. Vol. 6, (1988): 149-167.
Download Help Document