Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[PrimaryDecomposition] - compute a primary decomposition of an ideal
PolynomialIdeals[PrimeDecomposition] - compute a prime decomposition of the radical of an ideal
Calling Sequence
PrimaryDecomposition(J, k)
PrimeDecomposition(J, k)
Parameters
J
-
polynomial ideal
k
(optional) field extension
Description
The PrimaryDecomposition command constructs a finite sequence of primary ideals whose intersection equals the input J. Likewise the PrimeDecomposition command constructs a sequence of prime ideals whose intersection is equal to the radical of J. Calling PrimeDecomposition(J) is faster but otherwise equivalent to calling PrimaryDecomposition(Radical(J)).
By default, ideals are factored over the domain implied by their coefficients - usually the rationals or the integers mod p. Additional field extensions can be specified with an optional second argument k, which can be a single RootOf or radical, or a list or set of RootOfs and radicals.
The output of these commands is not canonical, and may not be unique. However, a Groebner basis is stored for each ideal in the sequence so the Simplify command can be used at no additional cost.
The algorithms employed by these commands require polynomials over a perfect field. Infinite fields of positive characteristic are not supported. Over finite fields, only zero-dimensional ideals can be handled because the dimension reducing process generates infinite fields.
Compatibility
The PolynomialIdeals[PrimaryDecomposition] and PolynomialIdeals[PrimeDecomposition] commands were updated in Maple 16.
Examples
See Also
Groebner[Solve], PolynomialIdeals, PolynomialIdeals[IdealContainment], PolynomialIdeals[Intersect], PolynomialIdeals[IsPrimary], PolynomialIdeals[IsPrime], PolynomialIdeals[Radical], PolynomialIdeals[Simplify], PolynomialIdeals[ZeroDimensionalDecomposition]
References
Gianni, P.; Trager, B.; and Zacharias, G. "Grobner bases and primary decompositions of polynomial ideals." J. Symbolic Comput. Vol. 6, (1988): 149-167.
Download Help Document