Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
OreTools[Modular][FractionFreeRightEucliean] - perform a fraction-free version of right Euclidean algorithm (usual, half-extended, and extended) modulo a prime
OreTools[Modular][RightEuclidean] - perform right Euclidean algorithm (usual, half-extended, and extended)
Calling Sequence
Modular[FractionFreeRightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2')
Modular[RightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2')
Parameters
Poly1, Poly2
-
nonzero Ore polynomials; to define an Ore polynomial, use the OrePoly structure
p
prime
A
Ore algebra; to define an Ore algebra, use the SetOreRing command
'c1', 'c2'
(optional) unevaluated names
Description
Modular[FractionFreeRightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2') calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the subresultant sequence of the first kind of Poly1 and Poly2.
The Modular[FractionFreeRightEuclidean] command requires that Poly1 and Poly2 be fraction-free, and that the commutation rule of the Ore algebra A also be fraction-free.
If the optional fourth argument to the FractionFreeRightEuclidean command c1 is specified, it is assigned the first co-sequence of Poly1 and Poly2 so that:
and c1[m+1] Poly2 is a least common left multiple (LCLM) of Poly1 and Poly2.
If the optional fifth argument to the FractionFreeRightEuclidean command c2 is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:
and c1[m+1] Poly2 = - c2[m+1] Poly1 mod p is an LCLM of Poly1 and Poly2.
Modular[RightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2') calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the right Euclidean polynomial remainder sequence of Poly1 and Poly2.
If the optional fifth argument to the Modular[RightEuclidean] command c2 is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:
Examples
Check the co-sequences.
Check the LCLM.
Try fraction-free right Euclidean algorithm.
See Also
OreTools, OreTools/Divisions, OreTools/Modular, OreTools/OreAlgebra, OreTools/OrePoly, OreTools[SetOreRing]
References
Li, Z. "A subresultant theory for Ore polynomials with applications." Proc. of ISSAC'98, pp.132-139. Edited by O. Gloor. ACM Press, 1998.
Download Help Document