Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MultiSeries[LeadingTerm] - find the leading term of a generalized series expansion
Calling Sequence
LeadingTerm(expr, x)
LeadingTerm(expr, x=a)
Parameters
expr
-
algebraic expression
x
name; the series variable
a
algebraic expression; the expansion point
Description
The LeadingTerm function computes a function that is equivalent to expr as the variable x tends to its limit point a. If a is not given, it defaults to 0.
When the limit of expr is finite and nonzero, LeadingTerm returns this limit.
The underlying engine for computing expansions is the MultiSeries[multiseries] function. In particular, the variable x is assumed to tend to its limit point in the manner described in MultiSeries[multiseries].
In rare cases, it might be necessary to increase the value of the global variable Order in order to improve the ability of LeadingTerm to solve problems with significant cancellation. This is made explicit by an error message coming from multiseries.
It can also happen that the result is wrong because Testzero failed to recognize that the leading coefficient of a multiseries expansion happens to be 0. In those cases, it is necessary to modify this environment variable (see Testzero).
The result is in product-of-powers form.
Examples
See Also
MultiSeries, MultiSeries[limit], MultiSeries[multiseries], Order, series[leadterm], Testzero
Download Help Document