Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LREtools[HypergeometricTerm][RationalSolution] - return the rational solution of linear difference equation depending on a hypergeometric term
Calling Sequence
RationalSolution(eq, var, term)
Parameters
eq
-
linear difference equation depending on a hypergeometric term
var
function variable for which to solve, for example, z(n)
term
hypergeometric term
Description
The RationalSolution(eq, var, term) command returns the rational solution of the linear difference equation eq. If such a solution does not exist, the function returns NULL.
The hypergeometric term in the linear difference equation is specified by a name, for example, t. The meaning of the term is defined by the parameter term. It can be specified directly in the form of an equation, for example, , or specified as a list consisting of the name of term variable and the consecutive term ratio, for example, .
If the third parameter is omitted, then the input equation can contain a hypergeometric term directly (not a name). In this case, the procedure extracts the term from the equation, transforms the equation to the form with a name representing a hypergeometric term, and then solves the transformed equation.
The term "rational solution" means a solution in . (See PolynomialSolution for the meaning of "polynomial solution".) Here we use the term "denominator" which is q in to mean that is in .
The search for a rational solution is based on finding a universal denominator which is u in such that is in for any rational solution y. By replacing y with in the given equation, we reduce the problem to searching for a polynomial solution.
The solution is the function, corresponding to var. The solution involves arbitrary constants of the form, for example, _c1 and _c2.
Examples
See Also
LREtools[HypergeometricTerm], LREtools[HypergeometricTerm][HGDispersion], LREtools[HypergeometricTerm][PolynomialSolution], LREtools[HypergeometricTerm][RationalSolution], LREtools[HypergeometricTerm][SubstituteTerm], LREtools[HypergeometricTerm][UniversalDenominator]
References
Abramov, S.A., and Bronstein, M. "Hypergeometric dispersion and the orbit problem." Proc. ISSAC 2000.
Bronstein, M. "On solutions of Linear Ordinary Difference Equations in their Coefficients Field." INRIA Research Report. No. 3797. November 1999.
Download Help Document