Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LREtools[HypergeometricTerm][OrbitProblemSolution] - solve the sigma-orbit problem
Calling Sequence
OrbitProblemSolution(, , x, r)
Parameters
-
first polynomial or an algebraic number
second polynomial or an algebraic number
x
independent variable, for example, x
r
list of equations which gives the tower of hypergeometric extensions
Description
The OrbitProblemSolution(, , x, r) command returns the solution of a -orbit problem, that is, a positive integer n such that . and can be algebraic numbers or polynomials in K(r), where K is the ground field and r is the tower of hypergeometric extensions. Each is specified by a hypergeometric term, that is, is a rational function over K. E is the shift operator.
If and are algebraic numbers then the procedure solves the classic orbit problem (). Otherwise, it solves the -orbit problem for polynomials in the tower of hypergeometric extensions. This means that the polynomials can contain hypergeometric terms in their coefficients. These terms are defined in the parameter r. Each hypergeometric term in the list is specified by a name, for example, t. It can be specified directly in the form of an equation, for example, , or specified as a list consisting of the name of the term variable and the consecutive term ratio, for example, . The OrbitProblemSolution function returns if there is no solution.
If the arguments of the -orbit problem are algebraic numbers, then the routine directly computes the solution. Otherwise, a hypergeometric dispersion is calculated. For an empty tower of hypergeometric extensions, a simple dispersion is calculated.
Examples
See Also
LREtools[HypergeometricTerm], LREtools[HypergeometricTerm][HGDispersion]
References
Abramov, S.A., and Bronstein, M. "Hypergeometric dispersion and the orbit problem." Proc. ISSAC 2000.
Download Help Document