Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GraphTheory[SpecialGraphs][PayleyGraph]
Calling Sequence
PayleyGraph(p)
PayleyGraph(p,k)
PayleyGraph(p,k,m)
Parameters
p
-
prime integer
k
positive integer
m
irreducible univariate polynomial of degree k over GF(p)
Description
If the input is PayleyGraph(p) then the output is an undirected unweighted simple graph G on p vertices labeled 0,1,...,p-1 where the edge {i,j}, with i<j, is in G iff j-i is a quadratic residue in Zp.
If the input is PayleyGraph(p,k) then the output is an undirected unweighted simple graph G on vertices labeled 0,1,...,q-1 where the edge {i,j}, i<j, is in G iff y-x is a square the finite field GF(q) where x is the th element and y is the th element in GF(q). The numbering of the elements in GF(q) is lexicographical.
The vertex label for the element f(x) in Zp[x] is f(p). For example, in GF(23) the elements are ordered . Thus the label for element is .
The field can be specified by specifying the extension polynomial by the user by specifying the extension polynomial for GF(q), a monic irreducible polynomial m(x) in Zp[x] of degree k.
Examples
See Also
SpecialGraphs
Download Help Document