Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GraphTheory[GraphNormal] - finds the normal form of a graph
Calling Sequence
GraphNormal(G)
GraphNormal(M)
GraphNormal(M,ws)
Parameters
G
-
undirected unweighted graph
M
adjacency matrix for undirected unweighted graph
ws
working storage
Description
The GraphNormal command computes a normal form for an undirected, unweighted graph. The normal form chosen is defined as the permutation that puts the greatest number of 1's in the earliest location in the adjacency matrix, when examining the entries in the order M[1,2], ..., M[1,n], M[2,3], ..., M[2,n], M[3,4], ....
This problem is exponential in the number of vertices, so can only be expected to return in reasonable time for graphs with a small to moderate number of vertices.
The form of the return is different for the three possible calling sequences:
For the first calling sequence, when the input is a graph, GraphNormal returns the permuted normal form graph.
For the second calling sequence, when the input is an adjacency matrix, GraphNormal returns a permutation in the form [1=n[1], 2=n[2], ...] that maps the original vertices to the normal form vertices.
For the third calling sequence, the working storage ws must be rectangular with wordsize integer datatype and of size when is the number of vertices in the graph, and the permutation [n[1],n[2],...] is stored in the first elements of the workspace on return.
Note that if the adjacency matrix is rectangular storage with wordsize integer datatype, then it is modified in-place to the adjacency matrix of the normal form. If the working storage is also specified, then the implementation will allocate no memory, and the validation that the input adjacency matrix is symmetric is skipped, so this is the most efficient calling sequence. If in this case the input adjacency matrix is not symmetric, the result is not defined.
Examples
Start with the Petersen graph.
Obtain normalization.
Compare adjacency matrices.
Create a randomized isomorphic copy, and verify that normalizations are equal.
Create another randomized isomorphic copy, and verify that normalizations are equal.
See Also
AdjacencyMatrix, IsomorphicCopy
Download Help Document