Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[BlackScholesTrinomialTree] - create a recombining trinomial tree approximating a Black-Scholes process
Calling Sequence
BlackScholesTrinomialTree(, r, d, v, T, N)
BlackScholesTrinomialTree(, r, d, v, G)
Parameters
-
positive constant; the inital value of the underlying asset
r
non-negative constant or yield term structure; annual risk-free rate function for the underlying asset
d
non-negative constant or yield term structure; annual dividend rate function for the underlying asset
v
non-negative constant or a volatility term structure; local volatility
T
positive constant; time to maturity date (in years)
N
positive integer; number of steps
G
the number of steps used in the trinomial tree
Description
The BlackScholesTrinomialTree(, r, d, v, G) command returns a trinomial tree approximating a Black-Scholes process with the specified parameters. Each step of this tree is obtained by combining two steps of the corresponding binomial tree (see Finance[BlackScholesBinomialTree] for more details).
The BlackScholesTrinomialTree(, r, d, v, T, N) command is similar except that in this case a uniform time grid with step size is used instead of G.
Compatibility
The Finance[BlackScholesTrinomialTree] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First you construct a trinomial tree for a Black-Scholes process with constant drift and volatility.
Here are two different views of the same tree; the first one uses the standard scale, the second one uses the logarithmic scale.
Inspect the tree.
Here is an example of a Black-Scholes process with time-dependent drift and volatility.
Again, you have two different views of the same tree. The first one uses the standard scale, the second one uses the logarithmic scale.
Inspect the second tree.
Compare the two trees.
See Also
Finance[BinomialTree], Finance[BlackScholesBinomialTree], Finance[GetDescendants], Finance[GetProbabilities], Finance[GetUnderlying], Finance[ImpliedBinomialTree], Finance[ImpliedTrinomialTree], Finance[LatticeMethods], Finance[MultinomialTree], Finance[SetDescendants], Finance[SetProbabilities], Finance[SetUnderlying], Finance[StochasticProcesses], Finance[TreePlot], Finance[TrinomialTree]
References
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document