Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[GenerateForms]
Calling Sequence
GenerateForms(Omega, deg)
Parameters
Omega
-
a list of lists of differential 1-forms
deg
a list of positive integers
Description
Let Omega = [Omega_1, Omega_2, Omega_3, ...] and let deg = [p_1, p_2, p_3, ...]. Then GenerateForm(Omega, deg) returns a list of differential forms of degree p = p_1 + p_2 + p_3 + ..., where each form omega in the list is of the form omega = omega_1 &w omega_2 &w omega_3 .... and where omega_i is a p_i-fold wedge product of forms in Omega_i.
The command GenerateForms is part of the DifferentialGeometry:-Tools package, and so can be used in the form GenerateForms(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-GenerateForms.
Examples
Define a 6-dimensional manifold M with coordinates [x1, x2, y1, y2, y3, z1]. (This choice of coordinate names is simply to help understand the output of the commands that follow).
Example 1.
Find all 2 -forms generated from [dy1, dy2, dy3].
Example 2.
Find all 2-forms obtained by choosing 1 from [dx1, dx2] and 1 from [dy1, dy2, dy3].
Example 3.
Find all 5-forms obtained by choosing 2 from [dx1, dx2] and 3 from [dy1, dy2, dy3].
Example 4.
Find all 3-forms obtained by choosing 1 from [dx1, dx2], 1 from [dy1, dy2], and 1 from [dz1].
See Also
DifferentialGeometry, Tools, JetCalculus, GenerateSymmetricTensors
Download Help Document