Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[DGbifom, DGform, DGtensor, DGvector]
Calling Sequence
DGbiform(x, M)
DGform(x, M)
DGtensor(x, indexType, M)
DGvector(y, M)
Parameters
x
-
a positive integer, a list of positive integers, a coordinate variable, or a list of coordinate variables
M
(optional) the name of defined frame
indexType
specifying the index type of the tensor
y
a positive integer or a coordinate variable
Description
The command DGform will create a single term differential form. Let Theta = [theta_1, theta_2, theta_3, ...] denote the coframe for the current frame or, if the optional argument M is given, the frame M. The list Theta can be obtained from the command DGinfo with the keyword "frameBaseForms" or "frameJetForms". Let V = [x_1, x_2, x_3, ...] denote the local coordinates for the current frame or, if the optional argument M is given, the frame M. The list V can be obtained from the command DGinfo with the keyword "frameIndependentVariables" or "frameJetVariables". If the integer i or coordinate x_i is given, the command returns the corresponding 1-form theta_i. If a list of p integers [i, j, k, ...] or coordinates [x_i, x_j, x_k, ...] is given, the command returns the p-form theta_i &w theta_j &w theta_k...
The commands DGbiform, DGtensor, and DGvector work in a similar fashion.
The command DGform is part of the DifferentialGeometry:-Tools package and so can be used in the form DGform(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGform. DGbiform, DGtensor, and DGvector work in the same way.
Examples
Example 1.
Define a manifold M with coordinates [x, y, z, w].
Example 2.
Define a rank 3 vector bundle E with coordinates [x, y, u, v, w] over a two dimensional base with coordinates [x, y].
Define the jet space J^2(R^2, R^2) for two functions u and v of 2 independent variables x and y.
See Also
DifferentialGeometry, Tools, evalDG, DGinfo, DGzip
Download Help Document