Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[CurvatureTensor] - calculate the curvature tensor of a linear connection on the tangent bundle or on a vector bundle
Calling Sequences
CurvatureTensor(g)
CurvatureTensor(C)
Parameters
g - a metric on the tangent bundle of a manifold
C - a connection on the tangent bundle of a manifold or on a vector bundle
Description
Let nabla be a connection on the tangent bundle of a manifold M and let chi(M) be the module of all vector fields on M. The curvature tensor of nabla is the type (1,3) tensor R (contravariant rank 1, covariant rank 3) which, when viewed as a linear map R: chi(M) x chi(M) -> Hom(chi(M)), is given by
R(X, Y)(Z) = nabla_X(nabla_Y(Z)) - nabla_Y(nabla_X(Z)) - nabla_[X, Y](Z).
Here X, Y and Z are vector fields on M.
Let nabla be a connection on a vector bundle E -> M and let Sigma(E) be the module of all sections of E. The curvature tensor of nabla is the type (3, 1) tensor R (contravariant rank 1, covariant rank 3) which, when viewed as a linear map R: chi(M) x chi(M) -> Hom(Sigma(E)) is given by R(X, Y)(Z) = nabla_X(nabla_Y(Z)) - nabla_Y(nabla_X(Z)) - nabla_[X, Y](Z). Here X and Y are vector fields on M and Z is a section of E.
The first Bianchi identity for the curvature tensor of a connection on the tangent bundle of a manifold asserts that R + nabla(S) + S . S (skew-symmetrized on indices 1, 3, 4) = 0. The second Bianchi identity asserts that nabla(R) + R . S (skew-symmetrized on indices 3, 4, 5) = 0. Here S is the torsion tensor of the connection, nabla(S) the covariant derivative of S, S . S is the contract of S &t S over the 3rd and 5th indices, and R . S denotes the contraction of R &t S over the 3rd and 6th indices.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CurvatureTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CurvatureTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and define a metric on the tangent space of M.
Calculate the curvature tensor for the metric g1.
Example 2.
First create a 3 dimensional manifold M and define a connection on the tangent space of M.
Here are two simple procedures we shall use for checking the Bianchi identities.
Bianchi1 := proc(R, C)
end:
Bianchi2 := proc(R, C)
Use the above programs to check the Bianchi identities.
Example 3.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
Example 4.
First create a rank 3 vector bundle E on M and define a connection on E.
See Also
Physics[Riemann], DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, CovariantDerivative, Physics[D_], SectionalCurvature, RicciScalar, RicciTensor, Physics[Ricci], TorsionTensor, Physics[Weyl]
Download Help Document