Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[Noether] - find the conservation law for the Euler-Lagrange equations from a given symmetry of the Lagrangian
Calling Sequences
Noether(X, lambda)
Parameters
X - a vector field representing a symmetry of the Lagrangian lambda
lambda - a Lagrangian for a variational principle, defined as a top degree horizontal form of the jet space J^k(E) of a bundle pi: E -> M
Description
The celebrated theorem of E. Noether provides a formula for the calculation of a first integral or conservation law for any symmetry of the Lagrangian. This formula, which is very complicated for high order Lagrangians is easily implemented using the horizontal homotopy for the variation bicomplex
Within the framework of the JetCalculus package conservation laws are represented by differential forms of degree n-1, where n is the dimension of M, whose horizontal or total exterior derivative vanishes by virtue of the Euler Lagrange equations.
The vector field X is a symmetry of the Lagrangian lambda if the Lie derivative of lambda with respect to the prolongation of X (to the order of the lambda) vanishes.
The command Noether is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form Noether(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-Noether(...).
Examples
Example 1.
We set a simple single integral problem with 2 dependent variables and compute the Euler-Lagrange equations
The Lagrangian L is invariant under rotations in the xy plane. Let us check this. To be technically correct we should work with the differential 1-form defined by L.
Now we find the first integral associated to the symmetry X:
To check that this is indeed a first integral, take the total derivative of F with respect to t and substitute from the Euler-Lagrange equations.
Example 2.
We use the command InfinitesimalSymmetriesOfGeometricObjectFields to find the symmetries of the Lagrangian for the wave equation in (2+1) dimensions.
We then use the command Noether to calculate the associated conservation laws.
Let us find the conservation law associate to the infinitesimal translations in the dependent variable u[]. We check the horizontal exterior derivative of omega1 vanishes on solutions to the 2+1 wave equation.
Let us find the conservation law associate to the infinitesimal simultaneous scaling of the in dependent and dependent variables. We check the the horizontal exterior derivative of omega2 vanishes on solutions to the 2+1 wave equation.
Finally, let us find the conservation law associate to the infinitesimal boost of the independent variables x and t. We check that the horizontal exterior derivative of omega3 vanishes on solutions to the 2+1 wave equation.
See Also
DifferentialGeometry, JetCalculus, EulerLagrange, HorizontalExteriorDerivative, InfinitesimalSymmetriesOfGeometryObjectFields, Prolong, TotalDiff,
Download Help Document