Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[AssignTransformationType] - assign a type (one of projectable, point, contact, differential substitution, generalized differential substitution, generic) to a transformation
Calling Sequences
AssignTransformationType(Phi)
Parameters
Phi - a transformation
Description
Let E -> M and F -> N be two fiber bundles. [i] A map Phi : E -> F which sends the fibers of E to fibers of N (and hence covers a map Phi0: M -> N) is called a projectable transformation. [ii] A map Phi: E -> F is called a point transformation. [iii] A transformation Phi: J^1(E) -> J^1(F) is called a contact transformation if the fiber dimensions of E and F are 1 and Phi pulls back the contact form on J^1(F) to a multiple of the contact form on J^1(E). [iv] If Phi: J^k(E) -> F and the total Jacobian of Phi is the identity matrix, then Phi is called a differential substitution. [v] A map Phi: J^k(E) -> F is called a generalized differential substitution. [vi] A transformation not of one the types [i]--[v] is called generic.
Explicit coordinate formulas for these various types of maps are given in Example 1.
Any transformation of type [i]--[v] can be prolonged to higher order jet spaces. See Prolong for further information.
The type of a transformation and its prolongation order can be determined by the command DGinfo with keyword "TransformationType".
The command AssignTransformationType is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form AssignTransformationType(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-AssignTransformationType(...).
Examples
Example 1.
First initialize various jet spaces of two independent variables and one dependent variable and prolong them to order 4.
Case 1. Projectable transformations from E21 to F21:
When a transformation is first defined, it is not given a type.
Now assign the transformation Phi1 a type.
This indicates that the transformation is a projectable transformation, the 0 indicates that the transformation has not been prolonged to a jet space.
Case 2. Point transformations:
Case 3. Contact transformations:
By the conventions adopted here, a contact transformation need not be a local diffeomorphism so that, in particular, the dimensions of the bundles E and F need not coincide.
Case 4. Differential Substitutions:
Case 5. Generalized Differential Substitutions:
See Also
DifferentialGeometry, JetCalculus, AssignVectorType, DGinfo, Prolong, Transformation
Download Help Document